X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

نویسندگان

  • Gera Kisselman
  • Wei Qiu
  • Vladimir Romanov
  • Christine M. Thompson
  • Robert Lam
  • Kevin P. Battaile
  • Emil F. Pai
  • Nickolay Y. Chirgadze
چکیده

The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers a promising opportunity for full automation of the X-ray structure-determination process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination

Crystallization from lipidic mesophase matrices is a promising route to diffraction-quality crystals and structures of membrane proteins. The microfluidic approach reported here eliminates two bottlenecks of the standard mesophase-based crystallization protocols: (i) manual preparation of viscous mesophases and (ii) manual harvesting of often small and fragile protein crystals. In the approach ...

متن کامل

Crystallization Optimization of Pharmaceutical Solid Forms with X‐ray Compatible Microfluidic Platforms

We describe a microfluidic approach to optimize crystallization of active pharmaceutical ingredients (APIs) and their solid forms (cocrystals) via crystal seeding. Subsequent on-chip X-ray diffraction is used to verify the crystal from. The microfluidic platform comprises an 8 × 9 well array that enables screening of seeding conditions (dilutions) by metering of API solution or API/cocrystal fo...

متن کامل

A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction.

We report a microfluidic approach for de novo protein structure determination via crystallization screening and optimization, as well as on-chip X-ray diffraction data collection. The structure of phosphonoacetate hydrolase (PhnA) has been solved to 2.11 Åvia on-chip collection of anomalous data that has an order of magnitude lower mosaicity than what is typical for traditional structure determ...

متن کامل

X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization.

Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In p...

متن کامل

Application Mapping onto Network-on-Chip using Bypass Channel

Increasing the number of cores integrated on a chip and the problems of system on chips caused to emerge networks on chips. NoCs have features such as scalability and high performance. NoCs architecture provides communication infrastructure and in this way, the blocks were produced that their communication with each other made NoC. Due to increasing number of cores, the placement of the cores i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2011